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1. Introduction 

 

     In 1922, the first fundamental theorem on fixed points for contractive-type 

mappings was established by Banach [3] and this result is known as Banach 

Contraction  Principle. Here for the sake of completeness, we state the result due to 

Banach [3] which runs as follows: 

 

Theorem 1.1. Let (𝑋, 𝑑)be a complete metric space, 𝑐 ∈  ]0, 1[  and let 𝑓 ∶ 𝑋 →
𝑋 be a mapping such that for each 𝑥, 𝑦 ∈ 𝑋,  
        𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑐 𝑑 (𝑥, 𝑦)                                                                                  (1)       
then 𝑓 has a unique fixed point 𝑎 ∈ 𝑋  such that for each  𝑥 ∈ 𝑋, lim

𝑛→∞
𝑓𝑛𝑥 = 𝑎.        

      After this classical result, there exist numerous fixed point theorems for self 

mappings in metric spaces and Banach spaces. However, practically speaking there 

do exist many situations when mappings under examination is not always a self 

map. So, fixed point theorems for non-self mappings are worth investigating. In 

this direction, Assad and Kirk [1] established a wonderful result. Since then there 

have been many theorems dealing with non-self mappings satisfying various types 

of contractive inequalities. The recent literature witness various extensions and 

generalizations of this theorem which includes Assad [2], Imdad et al. [7], Khan 

and Imdad  [9], Khan [8] and others. 
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     In 2002, Branciari [4] coined a different type of contraction condition known as 

contraction condition of integral type and proved a result which is as follows: 
 

Theorem 1.2.  Let  (𝑋, 𝑑) be a complete metric space, 𝑐 ∈ [0, 1), 𝑓 ∶ 𝑋 → 𝑋 be a 

mapping such that, 

 

   ∫ 𝜑(𝑡)𝑑𝑡 ≤    ∫ 𝜑(𝑡)𝑑𝑡,                                                              (2)
𝑑(𝑥,𝑦)

0

𝑑(𝑓𝑥,𝑓𝑦)

0
  

 

for each 𝑥, 𝑦 ∈ 𝑋 where 𝜑: 𝑅+  → 𝑅+  is a Lebesgue-integrable mapping which 

is summable, non-negative and such that, for each  𝜖 > 0, ∫ 𝜑 (𝑡)𝑑𝑡 > 0.
𝜖

0
  Then 𝑓 

has a unique fixed point 𝑧 ∈ 𝑋  such that, for each    𝑥 ∈ 𝑋,    
lim
𝑛→∞

𝑓𝑛𝑥 = 𝑧. 

 

       The aim of this paper is to analyze the existence and uniqueness of fixed points 

for non-self mappings  𝑇   defined on a complete metrically convex space (𝑋, 𝑑) 
satisfying a contractive condition of integral type, which either partially or 

completely generalize the results due to Banach [3],  Branciari [4], Ciric [6], 

Rhoades [10] and others. 

       Before proving the results, we collect the following definitions for further 

discussion. 
  

Definition 1.1. Let (𝑋, 𝑑) be a metric space and 𝐾 be a nonempty subset of a 

metric space 𝑋.  Let a mapping         

𝑇:𝐾 → 𝑋  is said to be generalized contraction condition on  𝐾  if for each  𝑥, 𝑦 ∈
𝐾,              

        ∫ 𝜑(𝑡)𝑑𝑡 

𝑑(𝑇𝑥 ,𝑇𝑦)

0

≤   𝑐 ∫ 𝜑(𝑡)𝑑𝑡,

𝑚(𝑥,   𝑦)

0

𝑐 ∈ [0, 1)                                                                        (3) 
 

where  𝑚 (𝑥, 𝑦) = {𝑑(𝑥, 𝑦), d(x, Tx), d(y, Ty),
d(x,Ty) + d(y,Tx)

2
}  and 𝜑: 𝑅+  → 𝑅+  

is a Lebesgue-integrable mapping which is summable, non-negative and such that, 

for each  𝜖 > 0,  
 

                          ∫ 𝜑 (𝑡)𝑑𝑡 > 0  .
𝜖

0

                                                                 (4) 
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Definition 1.2. ([ 1])  A metric space  (𝑋, 𝑑) is said to be metrically convex if for 

any 𝑥, 𝑦 ∈ 𝑋  with  𝑥 ≠ 𝑦 there exists a point 𝑧 ∈ 𝑋, 𝑥 ≠ 𝑧 ≠ 𝑦  such that 

𝑑(𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) = 𝑑(𝑥, 𝑦).     
 

2. Results 
 

     The result of this paper runs as follows. 
 

Theorem 2.1. Let (𝑋, 𝑑)  be a complete metrically convex metric space and 𝐾 be 

a nonempty closed subset of 𝑋.  Let 𝑇:𝐾 → 𝑋  be a mapping satisfying generalized 

contraction condition and for each 𝑥 ∈ 𝜕𝐾, 𝑇𝑥 ∈ 𝐾. Then 𝑇  has a unique fixed 

point 𝑥 ∈ 𝐾  such that, for each 𝑥 ∈ 𝐾, lim
𝑛→∞

𝑇𝑛𝑥 = 𝑥.     

 

Proof. Firstly, we proceed to construct two sequences {𝑥𝑛} and {𝑦𝑛} in the 

following way. Let 𝑥0 ∈ 𝐾.  Define 𝑦1 = 𝑇𝑥0.  If  𝑦1 ∈ 𝐾,  set 𝑦1 = 𝑥1.  If  𝑦1 ∉
𝐾, then choose  𝑥1 ∈ 𝜕𝐾  so that  

                                                   𝑑(𝑥0,   𝑥1)  +  𝑑(𝑥1,   𝑦1) =  𝑑(𝑥0,   𝑦1).              
If  𝑦2 ∈ 𝐾, then set 𝑦2 = 𝑥2.  If 𝑦2 ∉ 𝐾,  then choose 𝑥2 ∈ 𝜕𝐾  so that  

                                                   𝑑(𝑥1,   𝑥2)  +  𝑑(𝑥2,   𝑦2) =  𝑑(𝑥1,   𝑦2).           
Thus, repeating the foregoing arguments, one obtains two sequences {𝑥𝑛}  and {𝑦𝑛} 
such that  

(i) 𝑦𝑛+1 = 𝑇𝑥𝑛,                        
(ii) 𝑦𝑛 = 𝑥𝑛   if 𝑦𝑛 ∈ 𝐾,                       
(iii) If  𝑥𝑛  ∈ 𝜕𝐾, then 

                                                 𝑑(𝑥𝑛−1,   𝑥𝑛)  +  𝑑(𝑥𝑛,   𝑦𝑛) =  𝑑(𝑥𝑛−1,   𝑦𝑛),  
where  𝑦𝑛 ∉ 𝐾. 
 

     Here, one obtains two types of sets we denote as follows: 

 

                               𝑃 = {𝑥𝑖 ∈ {𝑥𝑛} ∶  𝑥𝑖 = 𝑦𝑖}  and   𝑄 =  {𝑥𝑖 ∈ {𝑥𝑛} ∶  𝑥𝑖 ≠ 𝑦𝑖}. 
 

One can note that if  𝑥𝑛 ∈ 𝑄 then 𝑥𝑛−1   and 𝑥𝑛+1  ∈ 𝑃. We wish to estimate 

𝑑(𝑥𝑛 ,   𝑥𝑛+1).   Now, we distinguish the following three cases. 

 

Case 1. If 𝑥𝑛 and 𝑥𝑛+1 ∈ 𝑃, then  
                       

       ∫ 𝜑(𝑡)𝑑𝑡 =  
𝑑(𝑥𝑛,   𝑥𝑛+1)

0 ∫ 𝜑(𝑡)𝑑𝑡 ≤
𝑑(𝑇𝑥𝑛−1,   𝑇𝑥𝑛)

0

𝑐  ∫ 𝜑(𝑡)𝑑𝑡.   
𝑚(𝑥𝑛−1,   𝑥𝑛)

0
                                                                                  (5) 

Since 
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𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)  

≤ max {𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛−1 ,   𝑇𝑥𝑛−1), 𝑑(𝑥𝑛,   𝑇𝑥𝑛),
𝑑(𝑥𝑛−1,   𝑇𝑥𝑛) +  𝑑(𝑥𝑛,   𝑇𝑥𝑛 − 1)

2
} 

 

≤ max{𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛,   𝑥𝑛+1),
𝑑(𝑥𝑛−1,   𝑥𝑛+1)

2
} . 

 

But 
𝑑(𝑥𝑛−1,   𝑥𝑛+1)

2
 ≤  

𝑑(𝑥𝑛−1,   𝑥𝑛) +  𝑑(𝑥𝑛,   𝑥𝑛+1)

2
 

≤ max  {𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛,   𝑥𝑛+1)}. 
 

Therefore 

                                 𝑑(𝑥𝑛, 𝑥𝑛+1)  =  𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)   ≤
max {𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛,   𝑥𝑛+1) }.                                                                 (6) 
 

If we suppose that 𝑑(𝑥𝑛−1,   𝑥𝑛)  <  𝑑(𝑥𝑛, 𝑥𝑛+1), then we obtain 

 

𝑑(𝑥𝑛, 𝑥𝑛+1)  =  𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)  ≤   𝑑(𝑥𝑛, 𝑥𝑛+1)  
 

which is a contradiction. Therefore from equation (6), we obtain 

       𝑑(𝑥𝑛, 𝑥𝑛+1)  =  𝑑 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛)  ≤   𝑑(𝑥𝑛−1, 𝑥𝑛). 
 

Hence  

 

       ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0
 ≤

                                               𝑐 ∫ 𝜑(𝑡)𝑑𝑡.                                                      
𝑚(𝑥𝑛−1 ,𝑥𝑛)

0
(7) 

 

Case 2.  If 𝑥𝑛 ∈ 𝑃  and  𝑥𝑛+1 ∈ 𝑄, then 

  

𝑑(𝑥𝑛,   𝑥𝑛+1)  +  𝑑(𝑥𝑛+1,   𝑦𝑛+1) =  𝑑(𝑥𝑛,   𝑦𝑛+1), 
 

which in turn yields  

𝑑(𝑥𝑛, 𝑥𝑛+1)  ≤  𝑑(𝑥𝑛,   𝑦𝑛+1). 
Now, proceeding as in case 1, we have 

 

                                                       ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0
 ≤

                                              𝑐 ∫ 𝜑(𝑡)𝑑𝑡.                                                      
𝑚(𝑥𝑛−1 ,𝑥𝑛)

0
(8) 
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Case 3. If 𝑥𝑛 ∈ 𝑄  and  𝑥𝑛+1 ∈ 𝑃. Since 𝑥𝑛 ∈ 𝑄 and  is a convex linear 

combination of  𝑥𝑛−1   and  𝑦𝑛  it follows that 

                                   𝑑(𝑥𝑛, 𝑥𝑛+1)  ≤ max{ 𝑑(𝑥𝑛− 1,   𝑥𝑛+1), 𝑑(𝑦𝑛,   𝑥𝑛+1) }.       
 

If  𝑑(𝑥𝑛− 1,   𝑥𝑛+1)  ≤   𝑑(𝑦𝑛,   𝑥𝑛+1)   then proceeding as in case 1, we have 

 

∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0

 ≤ 𝑐 ∫ 𝜑(𝑡)𝑑𝑡.                                                 
𝑚(𝑥𝑛−1 ,𝑥𝑛)

0

 

 

Otherwise if 𝑑(𝑥𝑛− 1,   𝑥𝑛+1)  ≥   𝑑(𝑦𝑛,   𝑥𝑛+1), then we have 

 

∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0

 

≤  ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛−1,   𝑥𝑛+1)

0

= ∫ 𝜑(𝑡)𝑑𝑡 ≤ 𝑐 ∫ 𝜑(𝑡)𝑑𝑡
𝑚(𝑥𝑛−2,   𝑥𝑛)

0

𝑑 (𝑇𝑥𝑛−2,   𝑇𝑥𝑛) 

0

.              (9) 

Here 

𝑑(𝑥𝑛,   𝑥𝑛+1)  

≤ max {𝑑(𝑥𝑛−2,   𝑥𝑛), 𝑑(𝑥𝑛−2,   𝑇𝑥𝑛−2), 𝑑(𝑥𝑛,   𝑇𝑥𝑛),
𝑑(𝑥𝑛−2,   𝑇𝑥𝑛) +  𝑑(𝑥𝑛,   𝑇𝑥𝑛−2)

2
} 

               ≤

max {𝑑(𝑥𝑛−2,   𝑥𝑛), 𝑑(𝑥𝑛−2,   𝑥𝑛−1), 𝑑(𝑥𝑛,   𝑥𝑛+1),
𝑑(𝑥𝑛−2,   𝑥𝑛+1)+ 𝑑(𝑥𝑛,   𝑥𝑛−1)

2
}. 

 

Notice that 

                      𝑑(𝑥𝑛−2 ,   𝑥𝑛)  ≤
 𝑑(𝑥𝑛−2,   𝑥𝑛− 1)  +  𝑑(𝑥𝑛− 1,   𝑥𝑛)  ≤  max{𝑑(𝑥𝑛−2,   𝑥𝑛−1), 𝑑(𝑥𝑛−1, 𝑥𝑛)}.  
Here, if  

𝑑(𝑥𝑛−2 ,   𝑥𝑛−1)  ≤  𝑑(𝑥𝑛−1,   𝑥𝑛)   𝑡ℎ𝑒𝑛  𝑑(𝑥𝑛− 2,   𝑥𝑛)  ≤  𝑑(𝑥𝑛−1,   𝑥𝑛). 
Otherwise, if 

                                   
𝑑(𝑥𝑛−1 ,   𝑥𝑛)  ≤  𝑑(𝑥𝑛−2,   𝑥𝑛−1)   𝑡ℎ𝑒𝑛  𝑑(𝑥𝑛− 2,   𝑥𝑛)  ≤  𝑑(𝑥𝑛−2,   𝑥𝑛−1). 

 

 Therefore, we obtain 

𝑑(𝑥𝑛,   𝑥𝑛+1)  

≤ max {𝑑(𝑥𝑛−2,   𝑥𝑛−1), 𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛,   𝑥𝑛+1),
𝑑(𝑥𝑛−2,   𝑥𝑛+1) +  𝑑(𝑥𝑛,   𝑥𝑛−1)

2
} 

 

which in turn yields 
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                 𝑑(𝑥𝑛,   𝑥𝑛+1)  ≤

 {
𝑐 𝑑(𝑥𝑛−1,   𝑥𝑛) 𝑖𝑓 𝑑(𝑥𝑛−1,   𝑥𝑛)  ≥  𝑑(𝑥𝑛−2,   𝑥𝑛−1)

𝑐 𝑑(𝑥𝑛−2,   𝑥𝑛−1) 𝑖𝑓 𝑑(𝑥𝑛−1,   𝑥𝑛)  ≤  𝑑(𝑥𝑛−2,   𝑥𝑛−1).
 

 

Thus in all the cases, we have 

                 𝑑(𝑥𝑛,   𝑥𝑛+1)  ≤
                     c max{𝑑(𝑥𝑛−1,   𝑥𝑛), 𝑑(𝑥𝑛−2,   𝑥𝑛−1) }.                                              (10) 
 

It can be easily shown by induction that for 𝑛 > 1,  we have 

  𝑑(𝑥𝑛,   𝑥𝑛+1)  ≤
             c max{𝑑(𝑥0,   𝑥1), 𝑑(𝑥1,   𝑥2) }.                                                                 (11) 
 

Thus 

∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0

 ≤ 𝑐 ∫ 𝜑(𝑡)𝑑𝑡                                        
max{{𝑑(𝑥0,   𝑥1),𝑑(𝑥1,   𝑥2) }}

0

 

 

 

which implies that 

                    ∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0
 ≤

                      𝑐 𝑚𝑎𝑥 {∫ 𝜑(𝑡)𝑑𝑡 , ∫ 𝜑(𝑡)𝑑𝑡 
𝑑(𝑥1,   𝑥2)

0

𝑑(𝑥0,   𝑥1)

0
}.                 (12) 

 

It follows that the sequence {𝑑(𝑥𝑛,   𝑥𝑛+1)} is monotonically decreasing. Hence 

∫ 𝜑(𝑡)𝑑𝑡
𝑑(𝑥𝑛,   𝑥𝑛+1)

0
 → 0 as 𝑛 →  ∞.  From equation (4) it implies that     

       lim
𝑛→∞

𝑑(𝑥𝑛,   𝑥𝑛+1)  = 0.                                                                       (13) 

  

      Now, we prove that the sequence {𝑥𝑛} is a Cauchy sequence. Let on contrary 

that the sequence {𝑥𝑛} is not Cauchy. Then there exists 𝜖 > 0 for which we can 

find subsequences {𝑥𝑛𝑘} and {𝑥𝑚𝑘
} such that 𝑑(𝑥𝑛𝑘 , 𝑥𝑚𝑘

)  ≥  𝜖. 

      Here, we proceed on the lines of Rhoades [10], it can be shown that the 

sequence {𝑥𝑛} is Cauchy and converges to a point say 𝑥. From equation (3) we 

have  
 

∫ 𝜑(𝑡)𝑑𝑡 ≤ 𝑐 ∫ 𝜑(𝑡)𝑑𝑡
𝑚(𝑥,𝑥𝑛)

0

𝑑 (𝑇𝑥,   𝑥𝑛+1) 

0

 ≤ 𝑐 𝑚𝑎𝑥 

  {∫ 𝜑(𝑡)𝑑𝑡 ,∫ 𝜑(𝑡)𝑑𝑡,∫ 𝜑(𝑡)𝑑𝑡,∫ 𝜑(𝑡)𝑑𝑡,   
𝑑(𝑥,   𝑥𝑛+1)

0

∫ 𝜑(𝑡)𝑑𝑡,
𝑑(𝑥𝑛,   𝑇𝑥)

0

  
𝑑(𝑥𝑛,   𝑥𝑛+1)

0

𝑑(𝑥,   𝑇𝑥)

0

𝑑(𝑥,   𝑥𝑛)

0

} 

.                                                                                                       (14) 
 

On letting 𝑘 → ∞, in equation (14) then we have, 
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                        ∫ 𝜑(𝑡)𝑑𝑡 ≤ 𝑐 ∫ 𝜑(𝑡)𝑑𝑡
𝑑 (𝑇𝑥,   𝑥) 

0

𝑑 (𝑇𝑥,   𝑥) 

0
       

which implies that 
                                       

    ∫ 𝜑(𝑡)𝑑𝑡 = 0,                                                                                         (15)
𝑑 (𝑇𝑥,   𝑥) 

0
 

which from equation (15), implies that 𝑑 (𝑇𝑥, 𝑥) = 0, this implies that 𝑇𝑥 = 𝑥. 
This shows that 𝑥 is a fixed point 𝑇.      
 

     To prove that the uniqueness of fixed points. Let us suppose that 𝑥1 and 𝑥2  are 

two fixed points of 𝑇, then 
 

∫ 𝜑(𝑡)𝑑𝑡 =  
𝑑(𝑥1,   𝑥2)

0

∫ 𝜑(𝑡)𝑑𝑡 ≤ 𝑐  ∫ 𝜑(𝑡)𝑑𝑡   
𝑚(𝑥1,   𝑥2)

0

   
𝑑(𝑇𝑥1,   𝑇𝑥2)

0

 

= 𝑐 𝑚𝑎𝑥 {∫ 𝜑(𝑡)𝑑𝑡 , 0
𝑑(𝑥1,   𝑥2)

0

} = 𝑐 ∫ 𝜑(𝑡)𝑑𝑡 
𝑑(𝑥1,   𝑥2)

0

 

which implies that ∫ 𝜑(𝑡)𝑑𝑡 = 0
𝑑(𝑥1,   𝑥2)

0
. Also imply that 𝑑(𝑥1,   𝑥2) = 0 or 𝑥1 =

 𝑥2. This shows the uniqueness of fixed point. This completes the proof. 
 

Remark  2.1.  By setting  𝐾 = 𝑋 and 𝜑(𝑡) = 1 for each 𝑡 ≥ 0  in the Theorem 

2.1, then we deduce a partial generalization of the result due to Banach [3]. 

Remark  2.2.  By setting 𝐾 = 𝑋  in the Theorem 2.1, then we deduce a result due 

to Rhoades [10]. 

Remark 2.3.  By setting 𝐾 = 𝑋  in the Theorem 2.1, then we deduce a fine result 

due to Branciari [4]. 

 

     By setting 𝐾 = 𝑋  in the Theorem 2.1, then we deduce the following corollary 

in the form of the result due Ciric [6]. 
 

Corollary 2.1.  Let (𝑋, 𝑑) be a complete metric space, 𝑐 ∈ [0, 1[, 𝑇: 𝑋 → 𝑋 is a 

mapping such that, for each 𝑥, 𝑦 ∈ 𝑋,                          

                      ∫ 𝜑(𝑡)𝑑𝑡 ≤
𝑑(𝑇𝑥,   𝑇𝑦)

0

𝑐  ∫ 𝜑(𝑡)𝑑𝑡   
𝑚(𝑥,   𝑦)

0
                                                                (16)    

where 𝑚 (𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), d(x, Tx), d(y, Ty), d(𝑥, Ty), d(y, Tx)} and 𝜑: 𝑅+ →
𝑅+is a Lebesgue-integrable mapping which is summable, non-negative and such 

that, for each 𝜖 > 0, ∫ 𝜑(𝑡)𝑑𝑡 > 0.   
𝜖

0
Then 𝑇 has a unique fixed point 𝑧 ∈ 𝑋 such 

that, for each  𝑥 ∈ 𝑋, lim
𝑛→∞

𝑇𝑛𝑥 = 𝑧. 

 

Example 2.1. Consider 𝑋 = 𝑅 be the set of reals equipped with natural distance 

and 𝐾 = {
1

𝑛
: 𝑛 ∈ 𝑍, |𝑛| ≥ 2} ∪ 0. Define 𝑇:𝐾 → 𝑋  by  
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𝑇 (
1

𝑛
) =

{
 
 
 

 
 
 

1

𝑛 − 1
, 𝑖𝑓 𝑛 > 1, 𝑛 𝑖𝑠 𝑜𝑑𝑑

1

𝑛
, 𝑖𝑓 𝑛 > 0, 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

1

𝑛 − 1
, 𝑖𝑓 𝑛 < 0, 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

0,                                    𝑖𝑓 𝑛 → ∞.
      

 

 

This example shows that Theorem 2.1 is a proper extension and generalization of 

the earlier results due to Rhoades [10], Branciari [4] and others. 
 

Conclusion: Theorem 2.1 generalizes the main results of Banach [3], Branciari 

[4], Ciric [6], Rhoades [10] and others. Moreover, we have considered the domain 

of our mapping is non-self rather than the self mapping. This shows a very general 

nature of our result in contrast to other known results in the literature. Finally, the 

above example gives an insight view of our result and applicable superiority over 

other results. 

 

Acknowledgements: The author is grateful to the learned referee for his careful 
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